logo
문자 보내
  • Korean
제품 소개폴리아스파르틱 FAQ

Curing Mechanism of Polyaspartic

인증
중국 SHENZHEN FEIYANG PROTECH CORP.,LTD 인증
중국 SHENZHEN FEIYANG PROTECH CORP.,LTD 인증
고객 검토
FEIYANG은 우리에게 그들의 전문적 서비스와 제품을 제공했습니다. 그것이 우리가 몇년 동안 그들과의 장기적이고 안정적 사업을 가진 이유입니다. 요즈음, 우리는 그들의 배포자들의 오직 하나 대신에 파트너들과 더욱 유사합니다. 또한, 나는 우리가 함께 미래에 시장을 확장할 수 있기를 희망합니다.

—— 미국 배포자

페이양은 믿을만한 공급업체, 그들의 제품 품질뿐 아니라 그들의 전문적 기술 지원과 서비스입니다. 우리는 이미 6년간 함께 거래했으며, 그것이 매년 아무것부터 여러 컨테이너까지 사업의 성장에 기여하지 않았습니다. 우리는 파트너로서 페이양을 가지고 있도록 그렇게 행복하고 운이 좋습니다.

—— 유럽 배포자

Feiyang의 호주 유통업체 중 하나가 된 것을 매우 기쁘게 생각합니다.

—— 오스트레일리아 배포자

제가 지금 온라인 채팅 해요

Curing Mechanism of Polyaspartic

Curing Mechanism of Polyaspartic
Curing Mechanism of Polyaspartic

큰 이미지 :  Curing Mechanism of Polyaspartic

제품 상세 정보:
Place of Origin: Zhuhai, China
브랜드 이름: Zhuhai Feiyang
인증: ISO 9001-2015, ISO 14001-2015
Model Number: Curing Mechanism of Polyaspartic
결제 및 배송 조건:
Minimum Order Quantity: 200kg
Packaging Details: 200kgs net weight in a steel drum
Delivery Time: 7 days after orders comfirmed
Payment Terms: L/C, T/T
Supply Ability: More than 20000 tons per year

Curing Mechanism of Polyaspartic

설명

The curing of polyaspartic is based on a unique chemical reaction mechanism involving a highly efficient cross-linking reaction between isocyanates and aspartic esters, resulting in a dense three-dimensional network structure.


Fundamental Chemical Reaction
Polyaspartic curing is essentially a stepwise polymerization reaction between isocyanate groups (-NCO) and amine groups (-NH₂) from aspartic esters, forming urea linkages (-NH-CO-NH-). The reaction can be expressed as:

{R-NCO} + {R'-NH} → {R-NH-CO-NH-R'}

This is an exothermic reaction, rapidly forming polymer chains and establishing cross-linking sites to create a network structure.


Three Stages of the Curing Process
Polyaspartic curing occurs in three stages determined by the molecular structure of the aspartic ester.

1.Induction stage (delayed reaction)

Ester groups (-COOR) within the aspartic ester molecule temporarily inhibit the reactivity of amine groups (-NH₂) due to steric hindrance and electronic effects, delaying the initial reaction with isocyanate. This stage provides an operational window (typically 10-30 minutes) for mixing, spraying, or rolling.

2.Rapid cross-linking stage

With rising temperature or after the induction stage, amine reactivity increases, reacting rapidly with isocyanate to produce numerous urea linkages. In a short period (1-2 hours), a high-strength cross-linked network forms, achieving rapid curing. 3.Post-curing stage

Residual -NCO groups continue reacting with ambient moisture or unreacted amines, further increasing cross-linking density and reaching final mechanical properties (such as tensile strength and abrasion resistance) within 24-48 hours.


Key Role of Aspartic Ester
Aspartic ester acts as a latent chain extender, optimizing the curing process through the following characteristics:

  • Controllable reaction rate—steric hindrance from ester groups regulates reaction reactivity, balancing application time and curing efficiency.
  • Low-temperature adaptability—maintaining reactivity at low temperatures (e.g., -10°C), avoiding curing failures experienced by traditional polyureas at low temperatures.
  • Environmental friendliness—reducing the release of volatile organic compounds (VOCs) to comply with green construction requirements.


Comparison with Traditional Polyurea

Curing Mechanism of Polyaspartic 0


Influence of Curing on Performance

  • High strength and abrasion resistance: High cross-linking density imparts excellent mechanical properties (tensile strength >20 MPa, abrasion <40 mg in Taber tests).
  • Chemical resistance: Dense structures resist penetration by acids, bases, and salt mist, suitable for chemical plants and marine environments.
  • Weather resistance: Aliphatic isocyanate backbone offers UV resistance, preventing yellowing or cracking in long-term use.
  • Elasticity and adhesion: Flexible segments (e.g., polyether chains) provide high elongation (>300%) and strong adhesion to substrates (concrete and metal).


Practical Control of Curing in Application

  • Mixing ratio: Isocyanate and aspartic ester must be strictly mixed in accurate proportions (e.g., 1:1) to prevent residual unreacted monomers.
  • Temperature control: Catalysts (e.g., organotin compounds) can be added in low-temperature environments, while application times must be reduced in high-temperature environments.
  • Humidity control: Moisture in the air can react with isocyanates, generating CO₂ as a side reaction; environmental humidity should be controlled below 80%.


Technological Development Trends

  • Smart curing systems: Developing photo-curable or temperature-triggered polyaspartic systems to achieve curing on-demand.
  • Bio-based materials: Utilizing plant-derived aspartic esters to reduce dependence on petrochemical resources.
  • Self-healing functions: Introducing dynamic bonds (e.g., Diels-Alder bonds) into the cross-linking network to achieve self-repair of minor coating damages.

 

The curing principle of polyaspartic, through a strategic combination of delayed reaction and rapid cross-linking, ensures controlled application processes and efficient curing. The designable chemical structure offers broad potential for future material performance optimization and novel application developments.

 

Feiyang has been specializing in the production of raw materials for polyaspartic coatings for 30 years and can provide polyaspartic resins, hardeners and coating formulations.

Feel free to contact us: marketing@feiyang.com.cn

 

Our products list:

 

Contact our technical team today to explore how Feiyang Protech’s advanced polyaspartic solutions can transform your coatings strategy. Contact our Tech Team

 

 

 

 

연락처 세부 사항
SHENZHEN FEIYANG PROTECH CORP.,LTD

담당자: Annie Qing

전화 번호: +86 18307556691

팩스: 86-183-07556691

회사에 직접 문의 보내기 (0 / 3000)